浙江嘉兴人,主要研究方向为非线性偏微分方程。担任MathsciNet评论员。
教育经历
2019.09-2022.06 首都师范大学女王调教
,博士
2016.09-2019.06 首都师范大学女王调教
,硕士
2012.09-2016.06 浙江工商大学计算机*女王调教-女王调教视频-女王 调教小说,学士
工作经历
2024.07-至今 女王调教-女王调教视频-女王 调教小说
,讲师
2022.07-2024.06 南京航空航天大学,博士后
研究方向
非线性偏微分方程的数学分析,包括可压缩流体力学方程、动理学方程、两相流方程组以及一般的部分耗散双曲方程组等。
学术科研成果
科研项目:
1. 国家自然科学基金青年基金,可压缩Navier-Stokes方程组在临界正则性框架下的自由边界问题,30万元,2024.01-2026.12,主持
2. 中国博士后科学基金第74批面上资助,8万元,2024.01-2024.06,主持
代表性论文:
1. L. Brandolese, L.-Y. Shou, J. Xu, P. Zhang,Sharp decay characterization for the compressible Navier-Stokes equations, Adv. Math. 456 (2024) 109905.
2. T. Crin-Barat, L.-Y. Shou, E. Zuazua, Large time asymptotics for partially dissipative hyperbolic systems without Fourier analysis: Application to the nonlinearly damped p-system, Ann. Inst. H. Poincaré C Anal. Non Linéaire (2024) doi: 10.4171/AIHPC/128.
3. H.-L. Li, L.-Y. Shou, Y. Zhang, Exponential stability of the inhomogeneous Navier-Stokes-Vlasov system in vacuum, Kinet. Relat. Models doi: 10.3934/krm.2024016.
4. T. Crin-Barat. L.-Y. Shou, J. Tan, Quantitative derivation of a two-phase porous media system from the one-velocity Baer-Nunziato and Kapila systems, Nonlinearity 37 (2024) 075002.
5. T. Crin-Barat, L.-Y. Shou, Diffusive relaxation limit of the multi-dimensional Jin-Xin system, J. Differential Equations 357 (2023) 302-331.
6. T. Crin-Barat,Q. He, L.-Y. Shou, The hyperbolic-parabolic chemotaxis system for vasculogenesis: Global dynamics and relaxation limit toward a Keller-Segel model, SIAM J. Math. Anal. 55 (5) (2023) 4445-4492.
7. H.-L. Li, L.-Y. Shou, Global existence and optimal time-decay rates of the compressible Navier-Stokes-Euler system, SIAM J. Math. Anal. 55 (3) (2023) 1810-1846.
8. H.-L. Li, L.-Y. Shou, Global existence of weak solutions to the drift-flux system for general pressure laws, Sci. China Math. 66 (2) (2023) 251-284.
9. H.-L. Li, L.-Y. Shou, Global weak solutions for compressible Navier-Stokes-Vlasov-Fokker-Planck system, Commun. Math. Res. 39 (1) (2023) 136-172.
10. H.-L. Li, L.-Y. Shou, Global well-posedness of one-dimensional compressible Navier-Stokes-Vlasov system, J. Differential Equations 280 (2021) 841-890.
11. 李海梁, 寿凌云, 一维可压缩Navier-Stokes-Vlasov方程组的渐近行为,中国科学: 数学 51 (6) (2021) 985-1002.
预印本:
1. T. Crin-Barat, Y.-J. Peng, L.-Y. Shou, J. Xu, A new characterization of the dissipation structure and the relaxation limit for the compressible Euler-Maxwell system, (2024) arXiv: 2407.00277
2. J. Liu, L.-Y. Shou, J. Xu, The Boltzmann equation in the homogeneous critical regularity framework, (2024) arXiv: 2408.13610.
3. M. Chi, L.-Y. Shou, J. Xu, The pressureless damped Euler-Riesz system in the critical regularity framework, (2024) arXiv: 2406.19955.
4. Q. He, L.-Y. Shou, L. Wu, Global dynamics for the generalized chemotaxis-Navier-Stokes system in R^3, (2024) arXiv: 2407.04498.
5. T. Crin-Barat, L.-Y. Shou, J. Zhang, Strong relaxation limit and uniform time asymptotic of the Jin-Xin model in the L^p framework, (2024) arXiv: 2311.04105.
奖励与荣誉
2017年 硕士国家奖学金
2021年 博士国家奖学金