报告地点:行健楼-526
邀请人:孙海琳教授
摘要:In this talk, we study the recovery and state compression of low-rank Markov chains from empirical trajectories. We propose a non-convex estimator based on rank-constrained likelihood maximization. Statistical upper bounds are provided for the Kullback-Leiber divergence and the l2 risk between the estimator and the true transition matrix. The estimator reveals a compressed state space of the Markov chain. We also develop a novel DC (difference of convex function) programming algorithm to tackle the rank-constrained non- smooth optimization problem. Convergence results are established. Experiments with taxi trip data show that the estimator is able to identify the zoning of Manhattan city.
报告人简介:郦旭东,复旦大学大数据*女王调教-女王调教视频-女王 调教小说青年研究员。他2010年本科毕业于中国科学技术大学,2015年博士毕业于新加坡国立大学。在加入复旦之前,他是美国普林斯顿大学运筹与金融工程系及新加坡国立大学数学系博士后研究员。他的研究主要关注数据科学中大规模优化问题的理论、算法、应用以及其稳定高效求解软件包的设计与开发。他于2019年获得了由国际数学优化协会 (Mathematical Optimization Society) 所颁发的青年学者研究奖(3年1人次),现为国际计算优化期刊Mathematical Programming Computation的编委。