女王调教

您所在的位置:网站女王调教 > 学术活动 > 学术报告 > 正文

A potential theory based Cartesian grid method for elliptic PDEs on irregular domains
发布时间:2020-12-22 09:38:16 访问次数: 字号:
邀请人:张志跃教授
报告方式:线上报告
点击链接入会,或添加至会议列表:
//meeting.tencent.com/s/X0bCYJntaxaT
会议 ID:448 683 405
会议密码:123456
 
摘要:
This talk will be on a potential theory based Cartesian grid method for elliptic PDEs on irregular domains. The method solves a boundary value or interface problem of PDE in the framework of second-kind Fredholm boundary integral equations. It avoids some limitations of the traditional boundary integral method. It does not need to know or compute the fundamental solution or Green's function of the PDE. Instead, it allows the solution of variable coefficients and nonlinear PDEs. The method evaluates boundary and volume integrals involved indirectly by solving equivalent but much simpler interface problems on Cartesian grids, based on properties of single, double layer boundary integrals and volume integrals in potential theory. In addition to its taking advantage of the well-conditioning property of the second-kind Fredholm boundary integral equations, the method makes full use of fast solvers on Cartesian grids. The Cartesian grid method can also accurately compute nearly singular and hypersingular boundary integrals. This talk will present recent developments of the method.
 
简介:应文俊,清华大学学士,美国杜克大学博士和博士后,美国密歇根理工大学的tenure-track 助理教授,2012年进入上海交通大学并入选中国青年千人。应文俊教授主要研究对心电波在心脏传播的仿真模拟,提出了时间空间自适应的计算方法,处于国际领先水平。在模拟心电波传播的问题上,对多尺度的奇异扰动的反应扩散方程,提出了全隐式时间积分方法。在研究生物细胞对电场刺激下反应的问题上,提出了杂交有限元方法,显著提高了计算精确度和效率。对椭圆型偏微分方程提出了无核边界积分方法。该方法克服了传统边界积分法的几个局限,即它无需知道积分核的解析表达式,并将边界积分法推广到可解变系数和各向异性的偏微分方程。现主持国家自然科学基金面上项目,已经在Communication incomputational physics, Journal of computational physics, SIAM journal onscientific computing, Journal of scientific computing等国际权威杂志发表文章