女王调教

您所在的位置:网站女王调教 > 学术活动 > 学术报告 > 正文

Interface-penalty finite elements for interface problems in H^1, H(curl), and H(div)
发布时间:2020-12-22 09:38:16 访问次数: 字号:
邀请人:王雨顺 教授
报告地点:行健楼526室

摘要:Interface-penalty finite element methods are proposed to solve interface problems in H1, H(curl), H(div) spaces on unfitted tetrahedral meshes. The transmission conditions across the interface are derived in a unified framework for three types of interface problems. Usually, the well-posedness of an H1-elliptic problem requires two transmission conditions for both the solution and the normal flux. However, the well-posedness for H(curl)- or H(div)-elliptic problem requires three transmission conditions. This provides the guideline for designing stable high-order finite element methods on unfitted meshes. Optimal error estimates are proven in energy norms for interface-penalty finite element methods within a unified framework for 
H1 , H(curl), and H(div). All error estimates are independent of the location of the interface relative to the mesh. Numerical examples show optimal convergence of the proposed finite element methods for piecewise smooth solutions.

报告人简介:郑伟英,中国科*女王调教-女王调教视频-女王 调教小说数学与系统科学研究院研究员,国家杰出青年基金获得者。1996年、1999年于郑州大学数学系分别获学士和硕士学位,2002年于北京大学女王调教 获博士学位,2006-2007年为德国慕尼黑科技大学洪堡基金访问学者。主要从事有限元方法、电磁场计算和磁流体计算的研究。在大型变压器的建模和计算、复杂介质电磁波散射等问题上取得重要研究成果。